Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Biol ; 83: e273843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466515

RESUMO

Instead of typical household trash, the heavy metal complexes, organic chemicals, and other poisons produced by huge enterprises threaten water systems across the world. In order to protect our drinking water from pollution, we must keep a close eye on the situation. Nanotechnology, specifically two-dimensional (2D) nanomaterials, is used in certain wastewater treatment systems. Graphene, g-C3N4, MoS2, and MXene are just a few examples of emerging 2D nanomaterials that exhibit an extraordinary ratio of surface (m3), providing material consumption, time consumption, and treatment technique for cleaning and observing water. In this post, we'll talk about the ways in which 2D nanomaterials may be tuned to perform certain functions, namely how they can be used for water management. The following is a quick overview of nanostructured materials and its possible use in water management: Also discussed in length are the applications of 2D nanomaterials in water purification, including pollutant adsorption, filtration, disinfection, and photocatalysis. Fluorescence sensors, colorimetric, electrochemical, and field-effect transistors are only some of the devices being studied for their potential use in monitoring water quality using 2D nanomaterials. Utilizing 2D content has its benefits and pitfalls when used to water management. New developments in this fast-expanding business will boost water treatment quality and accessibility in response to rising awareness of the need of clean, fresh water among future generations.


Assuntos
Nanoestruturas , Purificação da Água , Nanoestruturas/química , Nanotecnologia/métodos , Purificação da Água/métodos , Qualidade da Água
2.
Braz J Biol ; 82: e269137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36629548

RESUMO

Soil is the base of any ecosystem since it conserves nutrients and water for plant roots including agriculture and plantations. In dry and semi-arid places across the world, including the UAE, sandy soils are common. Their fertility is extremely low, and production is hampered by a number of agronomic challenges. Soil conditioner sources like bentonite and chicken manure might be used to improve the poor sandy soil attributes and hence boost soil productivity. From November 2019 to March 2020, an experiment was conducted to investigate the growth rates of Bougainvillea following bentonite and chicken manure amendments to sandy soil taken from Lehbab, Dubai. Bougainvillea was evaluated for its plant height (cm), max length of primary branch (cm), the number of leaves per plant, number of secondary branches, shoot weight (g), root length (cm), root weight (g), root/shoot ratio, chlorophyll contents, and chlorophyll a* and b*. In this experiment, a complete randomized design (CRD) with five treatments was used (10 replications per treatment). According to the findings, bentonite and chicken manure additions considerably influence the productive properties of sandy soil, as indicated by Bougainvillea growth. Additionally, the research suggests that Bougainvillea may be efficiently planted with 10% bentonite and 15% chicken manure applied to sandy soil, resulting in the healthiest plants compared to other amendments.


Assuntos
Bentonita , Produtos Agrícolas , Solo , Animais , Galinhas , Clorofila A , Ecossistema , Esterco , Aves Domésticas , Areia , Produtos Agrícolas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...